
Automated - JTAG Programming for Production
Environments

ADVISORS: Rania Hussein, Haidon Shultz, Jeffrey Jancik, Assi Friedman

SPONSOR: Innoflight

• JTAG is an interface (based on based on the IEEE 1149.1 standard) used for
programming, testing, and debugging digital devices such as FPGAs and SoCs.

Joint Test Action Group (JTAG)

• To address production bottlenecks,
automated programming interface
using OpenOCD and a RESTful API
allows for remote bitstream uploads,
programming, and status tracking

• This reduces human error and
enables scalable, remote, and
repeatable programming of
Microchip FPGAs in high-volume
environments.

Objective and Motivation

Results

Future Work

Requirements

Core Design
● Our API is built using Flask, a

lightweight Python web framework.
● Each API function is encapsulated in

its own class-based view, inheriting
from Flask.views.MethodView.
○ Each endpoint can support both

GET and POST methods when
appropriate.

Technical Design

• System is built around a modular client-server architecture
• The client sends HTTP requests to the API using a request command in Python
• The server receives user requests via Flask and executes OpenOCD commands to

program the FPGA using bitstream files.
○ OpenOCD is launched via Python’s subprocess module, and the server tracks

state (e.g., idle, programming) to report through /status/.
• Outputs are tracked at every step of the process and in the event of failure, a log of

it is recorded to be analyzed.
• Tasks are multithreaded to avoid blocking and is able to perform multiple tasks at

once.

● Modern high-throughput production environments require rapid and repeatable
programming of FPGAs and embedded systems.

● In many cases, engineers must repeatedly program large numbers of devices, a process that
is slow and manual.

● This introduces delays and human error, especially at scale.

Automated FPGA Programming in Production

Script Features

Multithreading
● Bitstream programming is ran in a

separate thread using Python's
threading.Thread so that long-running
processes do not block the API server.

Logging & Error Handling
● Output from OpenOCD is logged and returned

in case of failure.
● Return values include:

○ Success status (200)
○ Client errors (400)
○ Server errors (500)

State Management
● In /status/ and /cancel/, a global state variable

tracks whether the system is currently idle or
programming to prevent collisions and
unauthorized termination attempts.

API Security
● request.headers.get("API-Key") is checked

before processing critical functions.

● Verified our RESTful API by running client script tests simulating remote FPGA
programming. All key endpoints responded successfully, confirming proper
functionality.

Boundary Scan Testing: Test interconnects (wires, solder joints, pins) on PCBs without
using physical test probes
Multi-FPGA Management: Enable programming multiple FPGAs on different ports or
daisy chained via JTAG
Expanded Hardware Support: Script currently only supports Microchip Polarfire FPGAs,
expanding its features to Altera, Xilinx & other platforms.

● We tested all major API endpoints via a live client-server demo. The images above
show Flask server logs capturing real-time HTTP requests and server-side
processing

Class /
View

HTTP
Method

Description

Upload
View

POST Handles bitstream file uploads to the server. Validates and
saves .bit or .svf files.

Program
View

POST Starts a background thread to run OpenOCD and program
the FPGA with a specified bitstream.

Verify
View

POST Runs OpenOCD to verify a given bitstream. Validates file
existence and captures logs.

Cancel
View

POST Terminates the currently running OpenOCD programming
process and resets system state.

Status
View

GET Returns the current system state (idle, programming, etc.)
as JSON.

GetFiles
View

GET Returns a list of all available bitstream files in the server's
directory.

Device
View

GET/
POST

Intended to return JTAG programmer hardware info.

http://www.youtube.com/watch?v=dHHVA6CKdI0

